Climate & The Deep Blue Sea

University Distinguished Professor Geosciences, Planetary Science, Hydrology & Atmospheric Sciences and Applied Math M University of Arizona

17 April 2025 – Rotary Club of Oro Valley, Westward Look Wyndham Grand Resort, Tucson, AZ

Prof. Joellen L. Russell

The Pale Blue Dot

"Like it or not, for the moment the Earth is where we make our stand." – Carl Sagan, Pale Blue Dot, 1994

Earth as seen from 4 billion miles away.

Voyager 1 Image, February 14, 1990

Our Blue Planet

If you like your weather forecast, thank an oceanographer!

Advent of GFDL's FV3:

Convergence of Climate & Weather Modeling

FV3 has been chosen as the dynamical core for the Next Generation Global Prediction System project (NGGPS), designed to upgrade the current operational Global Forecast System (GFS) to run as a unified, fully-coupled system in NOAA's Environmental Modeling System infrastructure.

The Keeling Curve: Atmospheric CO_2 (Dec '24)

Data: Scripps CO₂ Program

Earth's net energy imbalance (EEI) has more than DOUBLED

Annual Greenhouse Gas Index

https://research.noaa.gov/article/ArtMID/587/ArticleID/2626/Warming-influence-ofgreenhouse-gases-continues-to-rise-NOAA-finds

https://www.globalchange.gov/browse/indicators/annual-greenhouse-gas-index

Global Atmospheric Temperature Anomalies

Global Land and Ocean Average Temperature Anomalies

January-December

https://www.ncdc.noaa.gov/cag/global/time-series/globe/land_ocean/ytd/12/1880-2024

HOTTEST GLOBAL YEARS **ON RECORD**

Global temperature anomalies (°C) averaged and adjusted to early industrial baseline (1881-1910). Data as of 1/12/2024. Source: NASA GISS & NOAA NCEI

2024: Hottest year ever; last 11 years are the 11 hottest!

2024 was 1.52°C above 1881-1910 baseline

America's 10 Fastest-Warming States

State	Temperature Change (1970-2018)	State	Temperature Change (1970-2018)
1. Alaska	4.22°	6. New Jersey	3.00°
2. New Mexico	3.32°	7. Colorado	2.90°
3. Arizona	3.23°	8. Vermont	2.85°
4. Delaware	3.15°	9. Rhode Island	2.84°
5. Utah	3.02°	10. Connecticut	2.84°

https://www.climatecentral.org/news/report-american-warming-us-heats-up-earth-day

America's 20 Fastest-Warming Cities

City	Temperature Change (1970-2018)	City	Temperature Change (1970-2018)
1. Las Vegas, NV	5.76°	11. Ft. Smith, AR	3.92°
2. El Paso, TX	4.74°	12. St. Louis, MO	3.85°
3. Tucson, AZ	4.48°	13. Boise, ID	3.84°
4. Phoenix, AZ	4.35°	14. Minneapolis, MN	3.72°
5. Burlington, VT	4.13°	15. Milwaukee, WI	3.70°
6. Chattanooga, TN	4.11°	16. Duluth, MN	3.67°
7. Helena, MT	4.11°	17. Fresno, CA	3.66°
8. Erie, PA	4.06°	18. Odessa, TX	3.59°
9. McAllen, TX	4.03°	19. Houston, TX	3.58°
10. Las Cruces, NM	4.01°	20. Medford, OR	3.51°

Reno, NV excluded. See methodology.

https://www.climatecentral.org/news/report-american-w

iarmina	uc haat	c iin a_1	$rth a \gamma \gamma$
<i>a</i>	us-neau	5-00-00	11 U I - U A V

1970

climatecentral.org

3. Flood

4. High-tech jobs in climate observations and prediction science

Global warming is ocean warming!

Observed changes in the Earth heat inventory for the period 1971–2020

IPCC AR5 (2013) WGI Chapter 3 (ocean observations); updated Forster et al. (2023), https://doi.org/10.5194/essd-15-2295-2023

Deep Ocean

Atmosphere 2020

Sea level is rising – big changes are already locked in (e.g. Norfolk)

After 1.5°C Warming

After 2°C Warming

After 4°C Warming

http://sealevel.climatecentral.org/

How Rising Seas Will Affect Norfolk Base

This animation shows the flooding that's likely to occur at Naval Station Norfolk, at current and higher sea levels, during the type of storm that hits on average once a year.

SOURCE: U.S. Army Engineer Research and Development Center

PAUL HORN / InsideClimate News

InsideClimate News

Major bleaching events on the Great Barrier Reef

Severe Bleaching

No or Negligible Bleaching

Coral Reef Studies

Coral Mortality

ARC Centre of Excellence for Coral Reef Studies

Global Shipping (June 1-15, 2012)

https://www.shipmap.org

Averages: Containers (yellow, 14.3M) Dry goods (blue, 0.5M kt) Liquids (red, 0.4M kt) Gas (green, 62M m3) Vehicles (pink, 10M)

CO₂ emissions - ~150 kt

🚗 Vehicles 19, 184, 868 kt

Shipping through an ice-free Arctic saves 1000's of miles, but requires sea ice **prediction**

Collapse of Bering Snow Crab Fishery

The collapse of eastern Bering Sea snow crab

Cody S. Szuwalski¹*, Kerim Aydin¹, Erin J. Fedewa², Brian Garber-Yonts¹, Michael A. Litzow²

The snow crab is an iconic species in the Bering Sea that supports an economically important fishery and undergoes extensive monitoring and management. Since 2018, more than 10 billion snow crab have disappeared from the eastern Bering Sea, and the population collapsed to historical lows in 2021. We link this collapse to a marine heatwave in the eastern Bering Sea during 2018 and 2019. Calculated caloric requirements, reduced spatial distribution, and observed body conditions suggest that starvation played a role in the collapse. The mortality event appears to be one of the largest reported losses of motile marine macrofauna to marine heatwaves globally.

Dutch Harbor Area Office PO Box 920587 Dutch Harbor, AK 99692 ALASK V

Advisory Announcement For Immediate Release: 10/6/2023 Ethan Nichols, Acting Area Management Biologist 907-581-1239

Alaska Departm

Doug Vincer

2023/24 Bering Sea Snow Crab Season Closed

The Alaska Department of Fish and Game (ADF&G) and National Marine Fisheries Service (NMFS) have completed analysis of 2023 NMFS trawl survey results for Bering Sea snow crab. The stock is estimated to be below the ADF&G regulatory threshold for opening a fishery. Therefore, Bering Sea snow crab will remain closed for the 2023/24 season.

Trust but verify: Carbon Accounting

Massachusetts v. EPA (2007)

"The Clean Air Act's sweeping definition of "air pollutant" includes "air pollution agent or combination of such agents, including substance or matter which is emitted into or otherwise enters the ambient air." § 7602(g) (emphasis added). ... [is] without a doubt "physical [and] chemical substance[s] which [are] emitted into the ambient air."

No. 05-1120

In the Supreme Court of the United States

COMMONWEALTH OF MASSACHUSETTS, et al., Petitioners,

v.

U.S. ENVIRONMENTAL PROTECTION AGENCY, et al., Respondents.

> On Petition of Writ of Certiorari to the United States Court of Appeals for the District of Columbia Circuit

BRIEF OF *AMICI CURIAE* CLIMATE SCIENTISTS DAVID BATTISTI, CHRISTOPHER FIELD, INEZ FUNG, JAMES E. HANSEN, JOHN HARTE, EUGENIA KALNAY, DANIEL KIRK-DAVIDOFF, JAMES C. MCWILLIAMS, JONATHAN T, OVERPECK, F. SHERWOOD ROWLAND, JOELLEN RUSSELL, STEVEN C. WOFSY IN SUPPORT OF PETITIONER

JOHN C. DERNBACH WIDENER UNIVERSITY LAW SCHOOL 3800 VARTAN WAY HARRISBURG, PA 17106 (717) 541-1933 ROBERT B. MCKINSTRY, JR.* PENN STATE UNIVERSITY 432 FOREST RESOURCES BUILDING UNIVERSITY PARK, PA 16802 (484) 467-3207 * Counsel of Record

KIRSTEN H. ENGEL UNIVERSITY OF ARIZONA COLLEGE OF LAW 1201 E. SPEEDWAY BLVD. TUSCON, AZ 85721 (520) 621-5444 Counsel for Amici Curiae Climate Scientists

World Greenhouse Gas Emissions in 2019 (Sector | End Use | Gas)

Total: 49.8 GtCO2e

Source: Climate Watch, based on raw data from IEA (2021), GHG Emissions from Fuel Combustion, www.iea.org/statistics; modified by WRI.

WORLD RESOURCES INSTITUTE

Fossil CO₂ emissions through 2023

US CO₂ Emissions: Decreasing from 2007 to today

Mass vs EPA Decided: April, 2007

Global Carbon Project 2024

PROGRESS TOWARD U.S. EMISSIONS TARGET

CLIMATE CO CENTRAL

Net GHG emissions (including land carbon sinks). Projections: current policy scenarios (optimistic). Source: U.S. EPA (2005-2020); Jenkins et al. REPEAT Project (2025-2030)

GHGs = greenhouse gases Source: Jenkins et al., REPEAT Project (August 12, 2022).

EMISSION CUTS BY 2030 with the inflation reduction act

- <mark>6%</mark> Non-CO₂ GHGs

37% Power

29% Transportation

CLIMATE CO CENTRAL

Fate of anthropogenic CO₂ emissions 2014-23 average

Partitioning

Sources

9.7 0.5 GtC/yr 89.8%

1.1 0.7 GtC/yr 10.2%

Total Emission 10.8 0.9 GtC/yr

Budget Imbalance (Net Source – Net Sink) = -0.4 GtC/yr

Source: Friedlingstein et al. 2024 (https://doi.org/10.5194/essd-17-965-2025); Global Carbon Project 2024

5.2 0.02 GtC/yr

2.9 0.4 GtC/yr 26%

3.2 0.9 GtC/yr

Atmosphere + Ocean = Land Where Land = (Emissions + Land Use Change – Vegetation)

0.02

Atmosphere

Ocean

0.5

Emissions

Land Use

Reducing uncertainties in the ocean sink can reduce the total uncertainty in the global constraint on the carbon budget

Source: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2015; Global Carbon Budget 2015

0.9

Vegetation

Verifying the Effectiveness of Ocean-based Carbon Dioxide Removal (CDR)

Caution Needed!

ADAPTED FROM GO.NATURE.COM/2BKSDNI

MARINE GEOENGINEERING

Dozens of approaches have been proposed to store carbon dioxide in or below the oceans, or to alter seas to cool the planet. No method has been rigorously tested scientifically.

....

FOAMS

Films or foams on the surface could reflect sunlight

> ALKALINIZATION Chalk-like powder could absorb CO₂ chemically

0000

MACROALGAE CULTIVATION

Carbon absorbed by growing seaweed might be stored at depth

solubility cycle

mixed layer dynamics

ice

OCEAN CARBON UPTAKE

WHAT ARE THE PATTERNS OF AIR-SEA CO2 EXCHANGE?

biological cycle

controls on

gas exchange

upwelling

biological cycle

Our Global Ocean Centers on the Southern Ocean

The Southern Ocean

Wind-driven upwelling from 2000-3000m

Talley & Olbers (2014, after Speer et al. 2000, and NRC 2011)

THE SOUTHERN OCEAN

of all the carbon dioxide

absorbed by the world's oceans

Measurements from Ships (1999-2015)

total

Measurements from Robot Floats (Argo) (1999-2015)

total

Southern Ocean Carbon and Climate Observations and Modeling

Southern Ocean Carbon and Climate Observations and Modelin

Courtesy: R. Beadling (clip)

SOCCOM

Unlocking the mysteries of the Southern Ocean

SOCCOM Floats 307 deployed, 143 operational

Hannah Zanowski U. Arizona B.A. (2010) Now: Asst. Prof. U. Wisc.-Madison

12/21/2014 – 6/7/2019 (122 cycles)

Hannah now teaches Intro Oceanography!

Air-sea carbon flux from floats

In the high-latitude ASZ, monthly mean float-based fluxes diverge substantially from ship-based fluxes. The floats exhibit much stronger outgassing in the autumn and winter and much less uptake in the summer.

Abstract

Although the Southern Ocean is thought to account f contemporary oceanic uptake of carbon dioxide (CO based on sparse observations that are strongly biase new estimates of Southern Ocean air-sea CO₂ fluxes biogeochemical profiling floats deployed by the Sou estimates the float-based fluxes find significantly stronger outgassing in the zone and Observations and Modeling project during 2014–2017.

SIZ

Air-sea carbon flux from SOCCOM

epth

(km

High carbon Deep Waters reach surface in Southern Ocean (ship obs. and BGC floats)

Pathways of high carbon spiral inward and upward (ship obs. and B-SOSE)

CM2.6 Indian Ocean particle pathways with >2.25% particle-transport Year 50.00

n = 28.05(km) DPCO2 - 400 (µatm) Chen et al. (2019)

Depth (km)

Tamsitt et al. (Nat. Comm. 2017)

Gray et al. (GRL 2018) Prend, Gray et al.

http://soccom.princeton.edu

Rising From the Antarctic, a Climate Alarm

Wilder winds are altering currents. The sea is releasing carbon dioxide. Ice is melting from below.

1020105

ANTARCTICA

By RENRY FOUNTAIN and JEREMY WHITE

PLAY THE CROSEWOR

Global Biogeochemical Argo:

in Mar 2025

nical-argo.org/float-map-network-status-maps.php

OXYGEN SATURATION

20

(III)

05

•••

Robot Floats

Growding Mind S.

Total Water in the Atmosphere: 2023 (every 6 hours, ERA5)

TIME : 01-JAN-2023 00:00

Total column vertically-integrated water vapour (kg m**-2)

	A
	90
	70
	60
ell's	50
	40
	36
La la	32
1	28
- 1	24
V	20
/	16
	12
	8
	4
	•

The World is Getting Windier – The fastest winds have gotten faster

6 cm/s per year for 33 years is 2 m/s faster

Young & Ribal, 2019: Science, DOI: 10.1126/science.aav9527

Sallée et al. 2021; DOI: 10.1038/s41586-021-03303-x

-180° -120° -60° 0° 60° 120°180° Deepening Shallowing

Southern Ocean Winds/Storms are Undersampled

SMOS Morning Pass Retrieved Wind Speed on 2021-Sep-16

35
-30
-25 % Wind
20 dg
15 From ≥ altimator
- 5

Direct comparison of QuikSCAT winds in SO storms with four different wind reanalyses (NCEP/CFSR; ERA-Interim; JRA55; MERRA)

Verezemskaya et al. 2017; DOI: 10.1002/2017GL074053

Capturing the Southern Ocean high winds to reduce the uncertainty in the Global Carbon Budget

UNITED STATES OF D

Principal Investigator: Joellen Russell, UA

Authorizing Official

Deputy PI: David Long, BYU

One More Scatterometer to Close the Carbon Budget

(Left) Independent visits per day by the ASCAT constellation (< 2, north of ~55°S)

(Right) Independent visits per day by the

Independent visits per day (ASCAT only)

Independent visits per day (ASCAT/Zephyr)

ASCAT constellation swaths over a 3-hour period (red)

Zephyr swaths over same 3-hour period (yellow)

PROPOSAL for Progress: The Role of Wind in the Ocean's Heat & Carbon Uptake

Prof. Joellen L. Russell

Thomas R. Brown Distinguished Chair of Integrative Science Depts of Geosciences, Planetary Science, Hydrology & Atmospheric Sciences and Applied Math University of Arizona

Climate and Carbon Prediction:

Convergence of Climate & Weather Modeling

26 Apr 2012 09:00

NASA Scientific Visualization Studio; Shirah et al. (2020); https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS001888

Air-Sea Carbon Flux & Winds

Outgas Uptake

Air-sea CO₂ Flux

Southern Ocean Flips from SINK to SOURCE with 20% increase in winds · / 30°S Uptake: Outgassing: 35°S Into Ocean Into Air 10 9 40°S-8 45°S 50°S 3 2 55°S-0 60°5 -2 -3 65°S 70°S--7 -8 Standard Wind -9 75°S-**Increased Winds** 80°S--3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Winter (July) Zonally-integrated Surface Carbon Flux July 2014 Enhanced Winds (mol/m2/yr) Sea-to-Air Carbon Flux (mol/m/s)

Surface Carbon Flux July 2014 Standard Winds (mol/m2/yr)

Russell et al, in revision at GRL https://doi.org/10.1002/essoar.10506276.1

How do we spread the word?

Shining light on the path ahead ...

WORLD VIEW

Ocean sei progress

Uncertainties around carbo to enforce. The answer float

Almost 200 nations have p emissions under the Paris to know whether they are

For the accord to work, ea the total carbon dioxide er emissions and deforestation Both human emissions and nations extrapolate from g incomplete, inaccurate or

As a result, the picture of instance, China admitted t consumption by up to 17%

A solution lies in the seas. about one-quarter of the oceanographers can bette data, along with other atm

nature climate change

Taking climate

Veronika Eyring 01,2*, Peter M. Peter Caldwell⁵, William D. Co George C. Hurtt¹², Alexandra J Lester Kwiatkowski⁰¹⁶, Ruth L Angeline G. Pendergrass ³¹⁹, F Benjamin M. Sanderson ¹⁹, B Ronald J. Stouffer ²¹ and Mar

Earth system models are con processes, resulting in a perfor a given future scenario. against observations and the is now evidence that giving e projection is suboptimal. Thi tools that facilitate a more ra model simulations with obse constraints that are a promis observations most relevant methods for model weightin the most credible informatic

ARTICLE

Change in futu meltwater

Ben Bronselaer^{1,2,3}*, Michael Winton², Stephe Ronald J. Stouffer^{1,2} & Joellen L. Russell¹

> Meltwater from the Ant metre of sea-level rise l concentration trajector Panel on Climate Chans from the ice sheets and widely used CMIP5 clin climate projections. He CMIP5 model 'GFDL ES Antarctic Ice Sheet mel RCP8.5 scenario, accou maximum global-mean

PERSPECTIVE https://doi.org/10.1038/s41558-018-0355-y

nature geoscience

Importance of wind and meltwater for observed chemical and physical changes in the Southern Ocean

Ben Bronselaer ^{1,2,3*}, Joellen L. Russell ¹, Michael Winton², Nancy L. Williams⁴, Robert M. Key³, John P. Dunne², Richard A. Feely⁵, Kenneth S. Johnson⁶ and Jorge L. Sarmiento³

The Southern Ocean south of 30° S represents only one-third of the total ocean area, yet absorbs half of the total ocean anthropogenic carbon and over two-thirds of ocean anthropogenic heat. In the past, the Southern Ocean has also been one of the most sparsely measured regions of the global ocean. Here we use pre-2005 ocean shipboard measurements alongside novel observations from autonomous floats with biogeochemical sensors to calculate changes in Southern Ocean temperature, salinity, pH and concentrations of nitrate, dissolved inorganic carbon and oxygen over two decades. We find local warming of over 3°C, salinification of over 0.2 psu near the Antarctic coast, and isopycnals are found to deepen between 65° and 40°S. We find deoxygenation along the Antarctic coast, but reduced deoxygenation and nitrate concentrations where isopycnals deepen farther north. The forced response of the Earth system model ESM2M does not reproduce the observed patterns. Accounting for meltwater and poleward-intensifying winds in ESM2M improves reproduction of the observed large-scale changes, demonstrating the importance of recent changes in wind and meltwater. Future Southern Ocean biogeochemical changes are likely to be influenced by the relative strength of meltwater input and poleward-intensifying winds. The combined effect could lead to increased Southern Ocean deoxygenation and nutrient accumulation, starving the global ocean of nutrients sooner than otherwise expected.

ARTICLES https://doi.org/10.1038/s41561-019-0502-8

Melanie Stetson Freeman/Staff; Christian Science Monitor; https://www.csmonitor.com/Environment/2022/0111/Meet-the-scientist-moms-fighting-climate-change-for-their-children

www.sciencemoms.com

Science Moms is a nonpartisan group of mothers who work in climate science and are concerned about the future their kids will face.

Together, they have over a century of experience studying our changing climate and the effects it will have on our kids and their kids after that.

As a team, they aim to break down climate change in ways that are simple, fresh and relevant to moms. And give them tangible ways to take action.

Science Moms wants all mothers to prioritize action on climate change.

To do that, we need to persuade them that this issue is as important as all the other things they're worried about (the economy, education, putting food on the table, etc).

We will achieve this by: Reframing the problem Explaining what's at stake Building her confidence to talk about it Making solutions achievable Giving her the tools to act

Walter Munk

Heejioineet Isedera/eoé kiisecob la agesesfully to frærdi Stosippfs an thitedri. Sfora Alfi Radio land Bogsrid Natorha Afriga wither Patrieig thevæl er pefivaæt landsome læt Daty of uring the alron phäbidy sinvasfiere.

https://www.sandiegouniontribune.com

We Can Do It!

POST FEB. IS TO FEB. 28

whiller F.

WAR PRODUCTION CO-ORDINATING COMMITTEE

What comes next?

Continue to build out carbon observing & prediction system. Complete implementation of near real-time carbon accounting. Publish the top 10 economies' monthly carbon "bill." Save the planet (or at least the humans)!

GEOSCIENCES THE UNIVERSITY OF ARIZONA

Scan here to donate

